Latency Measurement of

Fine-Grained Operations

in Benchmarking Distributed Stream Processing
Frameworks

Giselle van Dongen
Ghent University
Ghent, Belgium

giselle.vandongen @ UGent.be

Ghent University
Ghent, Belgium

Abstract—This paper describes a benchmark for stream pro-
cessing frameworks allowing accurate latency benchmarking
of fine-grained individual stages of a processing pipeline. By
determining the latency of distinct common operations in the
processing flow instead of the end-to-end latency, we can form
guidelines for efficient processing pipeline design. Additionally,
we address the issue of defining time in distributed systems by
capturing time on one machine and defining the baseline latency.
We validate our benchmark for Apache Flink using a processing
pipeline comprising common stream processing operations. Our
results show that joins are the most time consuming operation
in our processing pipeline. The latency incurred by adding a
join operation is 4.5 times higher than for a parsing operation,
and the latency gradually becomes more dispersed after adding
additional stages.

Index Terms—big data applications, distributed stream com-
puting, benchmark, Flink, Kafka

I. INTRODUCTION

Over the last decade, much research has been put into the
development of fast, scalable, fault-tolerant stream processing
frameworks. Because of their scalable, low-latency engine
designed to run on commodity clusters or in the cloud, these
frameworks are especially suitable for dealing with the in-
creasing amount of continuously generated data coming from
various domains: IoT, social media, web logs, etc.

Due to this vast development of stream processing frame-
works, establishing clear guidelines about which framework to
use for which use case has become cumbersome. Preliminary
work in this field tends to focus on defining benchmark
proposals consisting of common stream processing workloads
along with appropriate performance metrics [1]-[3]. Latency
is one of these performance metrics, since low-latency stream
processing jobs are becoming more and more business-critical
for many companies, unprovisioned delays can have significant
consequences for a business [4].

The setup described in this paper, enables performance
benchmarks of separate stages of a processing pipeline. These
outcomes can be used as a guideline when designing effi-
cient processing pipelines for other use cases. The end-to-
end processing pipeline of our benchmark includes common
operations on data streams, closely following those of [5]:

Bram Steurtewagen

bram.steurtewagen @ UGent.be

Dirk Van den Poel, Senior Member, IEEE,
Ghent University
Ghent, Belgium
dirk.vandenpoel @ UGent.be

reading from a Kafka topic, parsing, joining, aggregating,
window operations and writing to a Kafka topic. We define
our baseline as merely consuming from Kafka topics and
directly publishing the raw observations back to Kafka. The
performance change observed after adding a stage to the
pipeline is then interpreted as the framework’s performance
when executing that specific stage.

A fundamental issue when measuring latency in distributed
systems is the absence of absolute, global time to which we
can appeal. Every machine in the cluster has a local quartz
clock for measuring time but due to clock drift these cannot
be deemed accurate. Typical local clock drift is assumed to
be around 30 ppm (2.6 seconds per day) and can fluctuate
further due to temperature differences [6]. TrueTime, the glob-
ally synchronized clock used in Google’s Spanner database,
reports an average clock drift of 4 ms [7]. Several clock
synchronization methods have been developed, e.g. Network
Time Protocol (NTP) but none of them reach full precision
[8]-[11]. The minimum error when synchronizing over NTP
is 35 ms according to [12]. Previous benchmarking literature
does not take this into account. In our latency benchmark, we
address this issue by capturing the timestamps of incoming and
outgoing messages on a single machine of a message system.
In our benchmark, we use Apache Kafka as a message system
and we capture time on one single broker for all Kafka topics
and their partitions (cf. Section III-B).

Overall, we make the following contributions to benchmark-
ing literature of stream processing frameworks:

1) A new way of benchmarking latency (cf. supra) for
stream processing frameworks, validated on Apache
Flink.

Fine-grained latency measurement of common opera-
tions in a processing pipeline to lay out guidelines for
more efficient processing pipeline design.

Correct latency measurements by capturing time on one
machine.

2)

3)

The rest of this paper is organized as follows. The next
section gives a brief overview of previous work in this domain.
In Section IIT our latency benchmark is presented, and we

provide an overview of the environment set up to conduct
this benchmark for the popular framework Apache Flink. A
more detailed description of Apache Flink is given in Section
IV. The discussion of results follows in Section V. General
conclusions are drawn in Section VI. Finally, we state the
limitations of our research and issues for further research.

II. RELATED WORK

In the last few years, some initial work has been done on
benchmarking modern distributed stream processing frame-
works. In this section, we will briefly review the past literature
that served as a basis for our research.

In 2014, an initial benchmark definition for stream pro-
cessing frameworks was developed called Stream Bench [2].
It included methodologies for selecting and generating data,
workloads and metrics. The program set was implemented
for Apache Spark and Apache Storm. As proposed in Stream
Bench, we use a message system to decouple data generation
from data consumption.

Qian et al. [13] extended Stream Bench to benchmark
Apache Spark (receiver and direct approach) and Apache
Storm (including Trident) with tuning of parameters. They de-
termined the optimal settings for each framework. Lastly, they
compared the characteristics of hardware utilization (CPU,
memory, network and disk) for these platforms.

To guide users in optimizing configurations and cluster
deployments of Apache Spark, Li et al. [1] presented Spark-
Bench. The benchmark was designed to test both the batch and
streaming components of Apache Spark for different settings.

A benchmark of Spark, Storm and Flink was conducted
at Yahoo [5]. The incorporated metrics were throughput and
99th percentile latency. Apache Kafka was used as a message
system and Redis was used for storage. The benchmark simu-
lates an advertisement analytics pipeline with the following
steps: reading event data from Kafka, deserializing JSON
messages, filtering out irrelevant events, taking a projection
of the relevant fields, joining events, storing the information
in Redis and finally taking a windowed count and storing
each window in Redis. The pipeline we designed for our
benchmark follows this one closely, although we will use a
different methodology for extracting latency measurements.

In 2017, Karakaya et al. [14] extended the Yahoo Streaming
Benchmark by measuring resource usage and performance
scalability against a varying number of cluster sizes. They
found that Flink outperforms Spark and Storm under equal
constraints. Latency measurement was not included in their
setup.

Shukla and Simmhan [3], proposed an IoT benchmark for
distributed stream processing systems, based on common IoT
micro-benchmark tasks and two IoT applications for statis-
tical analysis and predictive analytics. This benchmark later
evolved into RIoTBench [15]. The depth of the benchmark
was increased by adding new tasks and new applications to
the existing ones. Furthermore, four real-world streams with
different distributions were used for evaluation. Five metrics

were incorporated: end-to-end latency, peak throughput, mem-
ory usage, CPU usage and jitter. The benchmark was tested
for Apache Storm.

In [16], characteristics of Spark and Storm were analyzed
and the latency of performing certain tasks was compared.
Three different tasks were executed: WordCount, Grep and
Top K Words. Latency was defined as the time it took to
process 10 000 000 records. As a second part of the paper, the
latency of subparts of the pipeline was measured by looking
at the DAG generated by the frameworks. For measuring these
subparts, the jobs were run on a single machine. We will
also measure the latency of separate stages of our pipeline,
however, we will run the jobs on a cluster to mimic big
deployments more closely.

Previous work has put no emphasis on analyzing separate
operations and has ignored the complexity of accurate latency
measurement in distributed systems. In the following section
we will lay out how our methodology mitigates this.

III. BENCHMARK DEFINITION
A. Processing Pipeline

In order to investigate the latency differences among com-
mon stream processing operations, we implemented a pro-
cessing pipeline resembling that of [5]. It aims to compute
the evolution of traffic intensity at the traffic measurement
locations. The stages included in the pipeline are the following
(as shown by Fig. 1):

1) Ingest or baseline: consuming speed and flow mea-
surements from Kafka. No operations are done on the
ingested data. This stage will serve as our baseline for
the other stages.

2) Parse: parsing the JSON data.

3) Join: joining speed and flow measurement streams on
timestamp, road lane and measurement location.

4) Aggregation: tumbling window of one second to com-
pute the total amount of cars and average speed per
measurement location.

5) Sliding window: sliding window with a ten-second
lookback period and a trigger interval of one second
to compute the short-term (5 seconds) and long-term
(10 seconds) relative change in traffic intensity.

At the end of each stage, the data is published to Kafka.

Katka Flink
| Flow I--w:l Ingest |E-’E'I Parse E Aggre- | | Sl‘iding
[Speed Hp Ingest | Parse h . gatlion Window
=== '===7== 1
0, 1) 2y 3} 4

Kafka |

Fig. 1. Processing flow.

B. Latency Measurement Methodology

As stated in [3], the latency of an output message is the
time that it took for a task to process one or several inputs in

order to generate its output message. We compute latency as
the difference between the Kafka consumer record timestamps
of the incoming records and the processed records. If multiple
input messages are required to generate one output message,
we take the average of the latencies of each input message.
We first compute the latency of merely ingesting from Kafka
and publishing back to Kafka, which we call the baseline (cf.
label 0 in Fig. 1). We then add one stage at a time to extract
the latency incurred from adding an extra stage (cf. labels 1 to
4 in Fig. 1). By doing this, we are able to observe the latency
increase of adding a specific stage to the pipeline.

The workload applied to the framework is specifically
designed for accurate latency measurement. The data stream
generator (cf. Fig. 2) publishes the input data stream to
Kafka. Every partition of a Kafka topic has one broker which
is elected as the leader. The leader takes in the new data
published on that partition and assigns the timestamp to
the consumer record. Different partitions can elect different
brokers as leader and since these brokers are not necessarily on
the same machine, timestamps may again not be comparable.
To prevent this, we will make sure that all partitions of the
input and output topics elect the same broker as leader. By
doing this, we make sure time is always captured on the
same machine, guaranteeing correct latency measurements. It
is important to note that our Kafka cluster will still comprise
five brokers to keep our setup as realistic as possible. The other
brokers are now merely used for data replication. Finally, we
make sure that latency is tested under sustainable throughput
conditions.

C. Architecture

An overview of our architectural set up has been given in
Fig. 2. To run our experiments we set up a DC/OS cluster for
resource management. The three master nodes of the DC/OS
cluster each run with 4 vCPU’s and 32GB RAM. The cluster
has 12 worker nodes each consisting of two Intel Xeon X5670
processors (2x 6 cores with hyper threading = 24 vCPU) with
96GB RAM and two 300GB RAIDI hard drives.

The benchmark consists of seven main components that are
all running in containers on DC/OS (as shown in Fig. 2):

Flink | JobManager Data InfluxDB
Cluster

Cluster [10x Task stream cAdvisor | HDFS
0.10.2.1 [E38] Manager Monitoring

generator
DC/OS (Marathon 1.6.0 - Mesos 1.5.0 - Docker 1.10)

Output
stream
consumer

i

Bare l Node H Node H Node H Node H Node H Node ‘
metal

l Node H Node H Node H Node H Node H Node ‘

Fig. 2. Benchmark Architecture.

o Data stream generator: publishes input data on Kafka.

o Kafka cluster: messaging system consisting of five bro-
kers. Each broker runs in a Docker container with 4
CPU’s and 16GB RAM.

o Flink cluster: cluster with one job manager and ten task
managers, each with twelve task slots. Each task manager
has 36 GB memory (12 GB heap) and 12 CPU’s.

e Output consumer: writes the processed data to HDFS.

e Evaluator: computes the latency distributions by reading
in the processed data from HDFS. This is run as a batch
job after the entire stream has been processed and is,
therefore, not present in Fig. 2.

o cAdvisor and InfluxDB: cAdvisor monitors the containers
and stores CPU and memory metrics in InfluxDB.

e HDFS: for data storage, we use HDFS with 10 data nodes
and 150 GB disk allocated to each node.

No other workloads were active while benchmarking.

D. Data

IoT use cases often require outcomes to be generated as fast
as possible and at a massive scale. The requirement for high
throughput and low latency makes it an interesting use case for
testing stream processing frameworks. Furthermore, by using
real-world data we will be able to mimic realistic usage of
the stream processing frameworks. For this benchmark we
will use traffic sensor data originating from the Nationale
Databank Wegverkeersgegevens (NDW) [17]. Sensors at every
measurement location in the Netherlands publish one minute
aggregates of the amount of cars (flow measurements) and the
average speed of the cars (speed measurements) that passed
on each lane of the road.

To ensure thorough testing of our framework, we make use
of a data publisher that simulates the traffic data at a higher
speed and granularity using temporal and spatial scaling [15].
Per second we publish 26 000 observations to the Kafka speed
and flow measurements topics. The size of one observation lies
between 180 and 200 bytes.

IV. APACHE FLINK

We use Apache Flink, a distributed, open-source stream
processing framework [18], to validate the benchmarking
methodology. For distributed execution, Flink chains operator
subtasks together into tasks. We ensure that each of the stages
of our processing flow translates to one task. Each of these
tasks is executed on one thread to enhance the efficiency
of parallel computation [19]. Apache Flink works with a
master-slave architecture in which the masters are called Job
Managers and the slaves are called Task Managers.

V. RESULTS

Latency (ms)

o m Y R, Gy U b, Y Sy, 5,
Baseline l—[l]—<
292
+ Parse l—D:l—<
464
i o R
1298
+Aggregate —L T
1856
+Window — 1

2344

Fig. 3. Cumulative latency of the processing pipeline for Apache Flink.

After running the benchmark for Apache Flink, we find the
following results, as visualized in Fig. 3. The median latency
of merely executing the baseline is 292 ms. We suppose this
time was mainly spent on network transfer and queueing in
Kafka. After computing the baseline, we add the parsing stage
to the pipeline which leads to a median latency increase by
172 ms. Subsequently, adding the join stage leads to the
highest latency increase of all stages by a median value of
835 ms, from 464 ms to 1298 ms. Joining the speed and the
flow stream takes more than 4.5 times longer than parsing
the incoming data. Additionally, the tail of the distribution
becomes longer, thereby increasing the variability of how
long it can take to process an observation. The difference
between the 75th and 95th percentile was 81 ms for baseline-
parse execution while this rose to 279 ms after adding the
join operation. When designing a processing pipeline, joining
streams should be avoided where possible. Aggregating the
data using a tumbling window of one second increases the
latency by 558 ms. The aggregation stage was expected to have
a latency higher than 500 ms, due to the tumble interval that
needs to finish before output is generated. The final stage of the
pipeline is a sliding window in which the long-term and short-
term evolution of the speed are computed. The sliding window
has a lookback period of ten seconds (ten minutes in the data
due to temporal scaling). Computing the relative change adds
a median latency of 488 ms, leading to a median end-to-end
latency of 2344 ms. We observe the latency becoming more
dispersed as we add stages to the processing flow. After adding
the last stage, the Sth percentile was at 1121 ms and the 95th
percentile at 3397 ms, a difference of more than 2000 ms.

VI. CONCLUSION

In conclusion, the described setup allows latency bench-
marking of separate stages of a processing pipeline. This
can be used for fine-grained framework comparisons and
to derive insights for more conscious processing pipeline
design. Furthermore, we enforce correct latency measurements
by capturing time on one machine. Running the benchmark
for Apache Flink brings to light that joining data streams
takes about 4.5 times longer than merely parsing the data.
Joins should, therefore, be avoided where possible. Addi-
tionally, the latency becomes more dispersed after adding
subsequent stages. The code for this project can be found at
http://www.bigdata.ugent.be/benchmark.htm.

VII. LIMITATIONS AND FURTHER RESEARCH

Further research could use this work to benchmark Apache
Flink against other frameworks such as Apache Spark. Other
frameworks might show different results and patterns. Further-
more, other performance metrics, e.g. throughput and resource
usage, could be added to the benchmark. Finally, our approach
allows more accurate benchmarking of latency, but due to the
architectural changes that had to be made, it would not be a
good setup for measuring other metrics such as throughput.

VIII. ACKNOWLEDGMENT

This research was done in close collaboration with Klarrio, a
cloud native integrator and software house specialized in bidi-
rectional ingest and streaming frameworks aimed at IoT & Big
Data/Analytics project implementations (https://klarrio.com).

REFERENCES

[1] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: a
comprehensive benchmarking suite for in memory data analytic platform
spark,” in Proceedings of the 12th ACM International Conference on
Computing Frontiers. ACM, 2015, p. 53.

[2] R.Lu, G. Wu, B. Xie, and J. Hu, “Stream bench: Towards benchmarking
modern distributed stream computing frameworks,” in Utility and Cloud
Computing (UCC), 2014 IEEE/ACM 7th International Conference on.
IEEE, 2014, pp. 69-78.

[3] A. Shukla and Y. Simmhan, “Benchmarking distributed stream pro-
cessing platforms for iot applications,” in Technology Conference on
Performance Evaluation and Benchmarking. Springer, 2016, pp. 90—
106.

[4] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca,
“Jockey: Guaranteed job latency in data parallel clusters,” in Proceedings
of the 7th ACM European Conference on Computer Systems, Sser.
EuroSys "12. New York, NY, USA: ACM, 2012, pp. 99-112.

[51 S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng et al., “Benchmarking
streaming computation engines: Storm, flink and spark streaming,” in
Parallel and Distributed Processing Symposium Workshops, 2016 IEEE
International. 1EEE, 2016, pp. 1789-1792.

[6] R. Ostrovsky and B. Patt-Shamir, “Optimal and efficient clock synchro-
nization under drifting clocks,” in Proceedings of the eighteenth annual
ACM symposium on Principles of distributed computing. ACM, 1999,
pp. 3-12.

[7]1 J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner:
Googles globally distributed database,” ACM Transactions on Computer
Systems (TOCS), vol. 31, no. 3, p. 8, 2013.

[8] D. L. Mills, “Internet time synchronization: the network time protocol,”
IEEE Transactions on communications, vol. 39, no. 10, pp. 1482-1493,
1991.

[9] M. Maréti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time

synchronization protocol,” in Proceedings of the 2nd international

conference on Embedded networked sensor systems. ACM, 2004, pp.

39-49.

J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-

nization using reference broadcasts,” ACM SIGOPS Operating Systems

Review, vol. 36, no. SI, pp. 147-163, 2002.

L. Lamport, “Time, clocks, and the ordering of events in a distributed

system,” Communications of the ACM, vol. 21, no. 7, pp. 558-565, 1978.

M. Caporaloni and R. Ambrosini, “How closely can a personal computer

clock track the utc timescale via the internet?” European journal of

physics, vol. 23, no. 4, pp. L17-L21, 2002.

S. Qian, G. Wu, J. Huang, and T. Das, “Benchmarking modern dis-

tributed streaming platforms,” in Industrial Technology (ICIT), 2016

IEEE International Conference on. 1EEE, 2016, pp. 592-598.

Z. Karakaya, A. Yazici, and M. Alayyoub, “A comparison of stream

processing frameworks,” in Computer and Applications (ICCA), 2017

International Conference on. 1EEE, 2017, pp. 1-12.

A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: An iot bench-

mark for distributed stream processing systems,” Concurrency and

Computation: Practice and Experience, vol. 29, no. 21, 2017.

P. Cordova, “Analysis of real time stream processing systems considering

latency,” University of Toronto, Tech. Rep., 2014.

“NDW: Nationale Databank Wegverkeersgegevens,” http://www.ndw.

nu/, 2017, [Online; accessed 25-July-2017].

“Apache Flink: Flink Programming Guide,” https://ci.apache.org/

projects/flink/flink-docs-release- 1.3/, 2017, accessed: 25-July-2017.

“Apache Flink Docs: Distributed Runtime Environment,” https:/ci.

apache.org/projects/flink/flink-docs-release- 1.3/concepts/runtime.html,

2017, [Online; accessed 25-July-2017].

(10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

